

Jul/Aug 2016

Downloads:
http://www.intl-spectrum.com/mag/JULAUG.2016/default.aspx

From the Inside July/August 2016
It is the time of year that I start planning for the next Spectrum conference. If you haven't yet seen the ad for the 2017 Spectrum, it will be May 1st-4th at The Wigwam in Litchfield Park, (Phoenix), Arizona. This is the same venue as the 2016 conference.

Building A Modern Line-Of-Business Application Part 4: Identity Management
This is part 4 in a series on exploring what it takes to build a Line-Of-Business application from scratch using the tools and features found in modern software technologies. In this article we explore identity management. What does it take to provide provide security, access management, and business discipline to the users of your software? Read Part 4 and find out.

Business Tech: Flawgorithms
I'm on Facebook, talking to Ross Morrissey, and we end up in a conversation about flawed assumptions in formulas. It started me thinking.

QM and VFS
Sometimes MultiValue can be the complete solution. Sometimes we just use pieces. The database can be used without using mvBASIC or Proc. Or, you can code the middle in MultiValue and let SQL hold the data. Here's a success story with QM can playing that middle role.

IS.HASH.SHA1: Generating with UniBASIC DIGEST Command
In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function designed by the United States National Security Agency and is a U.S. Federal Information Processing Standard published by the United States NIST.

Advertisers

About Magazine

Advertisers

International Spectrum

Brian Leach Consulting, ltd

Natec Systems

Ladybridge Systems Ltd

HDWP

PICK Programmers Shop

CLIFTON OLIVER
International Spectrum Magazine - Jul/Aug 2016

[image: International Spectrum]

 From the Inside July/August 2016

 From the Inside July/August 2016

 Nathan Rector

 It is the time of year that I start planning for the next Spectrum
 conference. If you haven't yet seen the ad for the 2017 Spectrum, it will
 be May 1st-4th at The Wigwam in Litchfield Park, (Phoenix), Arizona. This
 is the same venue as the 2016 conference.

 It seems like the conference is pretty far away, but it really isn't. I
 have to start planning everyone's sessions so you have something to show
 to your company. I would like to know what you, as a MultiValue user,
 would like to see. What topics will sell your bosses on sending you to
 Spectrum?

 The demands on your IT department are getting more specific, which defines
 the types of examples and business solutions that you need to know more
 about. I remember having to justify my attendance, so I watch the trends
 that are coming. The conference works because we update our content with
 the times.

 We have MultiValue Experts as speakers who give us great content, but it
 is up to me to guide them. It is up to you to guide me. I would like to
 hear from the MultiValue Users and Developers. I want to make sure you get
 the materials, education, and experiences that are needed to maximize your
 ability to create efficient enterprise applications.

 There are a lot of different trends floating around right now. If you are
 unsure what you would like to see, here are a few that I've noticed:

 Virtualization/Cloud Computing

 Everyone is talking Cloud Computing and Virtualization, and for pretty
 good reasons. We have presented topics on Virtualization and Cloud
 Computing at the conference before, but what are you interested in hearing
 next? Do you need to know how to integrate MultiValue databases into a
 cloud API, like Azure or Google App Engine? Or are you looking run a
 MultiValue server in a VM(Virtual Machine)?

 Tablets and Mobile Apps

 Mobile Line-of-Business applications are a must. Many companies are not
 taking full advantage of what mobile apps can bring or how they should be
 used in the enterprise. How can we help you help them?

 Windows 10 and Universal Apps

 Working with Windows 10 development can be a pain, especially if you
 haven't been part of the beta program. Would you like to see general
 sessions on how to use Windows 10? On how Universal Apps are created?
 These would probably not be MultiValue specific, but we need to know about
 other software to make our jobs possible, so I'd be happy to include them.

 Office 365 REST Services

 Looking to integrate Office 365 more closely with your Line-of-Business
 application? Documents, calendars, e-mail, spreadsheetsâ�¦ there are
 versions that are free and versions for a fee. All can be integrated with
 your MultiValue data.

 Integration - Email, CRM, EMR, LDAP, Active Directory

 Do you have other applications within your environment that you need to
 integrate with? We have been an island unto ourselves for so long, we
 sometimes forget that our business has information that other systems can
 use, or is necessary for business functions. What integration options do
 you need?

 External Programming Languages

 What languages are your business requiring you to work with? .NET, Java,
 Python, Javascript, HTML, JSONâ�¦ there are many others. We can provide
 topics on all of these, both stand-alone and in connection with your
 databases.

 These are just a few examples. What do you find most interesting? What are
 the trends and topics that you would like to have covered in sessions at
 Spectrum? I would like to hear from you.

International Spectrum Magazine - Jul/Aug 2016

[image: Brian Leach Consulting, ltd]

 Building A Modern Line-Of-Business Application Part 4: Identity Management

 Building A Modern Line-Of-Business Application Part 4: Identity Management

 Nathan Rector

 Identity Crisis

 Identity Management is often known as User Management. Security Management
 is often known as Access Management. A lack of common terminology is just
 one of the issues which makes this topic complex.

 What is Identity Management? If you have ever built, or used, a
 multi-user, multi-interfaced software before, you've encountered it.
 Identity Management is used to provide security, access management, and
 business discipline to the users of your software.

 Unfortunately, it is not always well thought out. Many developers rely on
 the built-in features of the database or O/S, and then find themselves
 boxed in and unable to change to something better or more flexible.

 It is the key and firewall to your LOB (Line-of-Business) application. A
 good Identity Management system allows your application to avoid running
 into restrictions that may require difficult workarounds.

 Security

 Identity Management is commonly used for security. If your software merely
 checks for the username and password, you are already missing
 opportunities. For example, you could be making sure that the user is
 permitted to access the LOB software from a specific interface or device.
 Controlling access is no longer a yes-or-no process.

 The security aspect of Identity Management must also include validating
 security tokens using them to expire old passwords, enforce user idle
 timers, and authenticate logging.

 Access Management

 Access Management is the more sophisticated side of security. It is all
 about what the user can do once they have been allowed inside. Many
 developers will equate this to "menu access" or in modern terms "role
 management." That's just a part of the story. Access Management should be
 designed to provide administrators complete control over what a user does,
 when it can be done, for how long, how much, and/or where it can be done.

 One way to accomplish this is by establishing roles or groups. Roles
 provide the administrator the flexibility to keep things simple for most
 users while still allowing for complex adjustments where needed. This is
 how Microsoft ActiveDirectory works, even if it isn't the best designed
 example.

 Business Discipline and Procedures

 This may seem like an odd idea to single out, as it just seems like an
 obvious extension of Access Management. In its purest form that is
 correct. A developer would use a role to define whether or not the user
 has been granted access to a specific procedure or process. But your
 system can also define if a user can change information. Or perhaps, if
 they are required to answer additional questions when dealing with data.
 You could also use this system to define what and how specific users or
 interface will enter information.

 The simplest example is assuming certain data (customer id, terms, credit
 limits, or available products) when working with a mobile device, while
 explicitly asking those questions from the user when working at a desktop.
 There are certainly people proficient in texting, but the general rule is
 that less typing is preferable when dealing with mobile.

 Another example: A user is interfacing with the LOB data from within
 Excel. Roles can be used to restrict what they have access to and if the
 data is read-only vs read-write.

 Identity Management is Not Employee Management

 I've seen quite a few Identity Management systems use the same information
 as the Employee/Payroll systems. While this makes it easy to shut down a
 user's account when an employee is terminated, it doesn't give you the
 flexibility you need to add users who aren't employees.

 You auditor needs access to reports, but his check comes from Accounts
 Payable. Your vendor may need to access their sales and inventory data but
 that doesn't mean he's eligible for your health insurance.

 It also doesn't provide you the means to provide security and access
 management to specific devices. There are many different interfaces these
 days, both public and private, for roaming and physical locations. These
 types of controls are often overlooked.

 We all have customer web portals to access your LOB data. There are many
 times when you need to provide employees access to customer web portal
 information. Using a central identity management system, which is not
 HR-based, you can provide access to customer information for the employee,
 as well as provide customer information to the employee.

 Identity Management vs Interface/Device Management

 Identity Management is more than "user credentials." Using an API-centric
 approach to development, you begin to see the bigger picture.

 In the early days - and even now, in may shops - developers will look at
 the user as the primary qualifier of what data and programs are
 accessible. The user becomes the definer of how things are to be done.
 This is great for internal business applications, with the user in the
 office, at a desktop, with all of your intranet security in place. But
 what happens when the user is using the LOB software outside of this
 relatively uniform and protected bubble?

 Do you want to provide "save as PDF" or "export data to Excel" features
 for accounting information when the user is at home? Do you want a user to
 access that data from outside at all?

 Another place where this becomes important is with specific types of
 devices. This falls under "business discipline and procedures" more than
 under "security and access." Do you need to change the interface,
 presentation, and workflow for users accessing your LOB when in the
 warehouse, but give them full access when they are in the main office?
 What about mobile access?

 What about the IoT (Internet of Things)? If you have a sensor transmitting
 data to your LOB, you probably don't want it interfacing with your web,
 GUI, or green screen. Linking the user identity as a device type of
 "sensor" will provide additional security because it won't have a "human"
 interface. Instead it might have a RESTful service or some other
 streamlined API.

 Expanding user/password or user/password/device allows you to deny access
 to an authentication request that doesn't match all three.

 Built-In Identity Management vs Application Identity Management

 As I said at the top of the article, there is a natural tendency to use
 the built-in identity management of the database or O/S. This may not be
 the best solution.

 The built-in systems are mainly used to address the security aspect of
 their one part of your infrastructure. They weren't designed to handle
 application access and security management. Nowadays, that simple login
 concept is too simple for restricting applications usage. It doesn't
 provide the flexibility you need when interfacing with your LOB
 application in a stateless interface, or when working with web
 applications, or anything non-persistent.

 While I would recommend using the built-in system to interface security as
 a part of your process, I wouldn't recommend using it for user security.
 For example, if you are using an API from Excel, you can use the security
 to provide initial authentication and then do a secondary check using
 application identity management based on the user logged into Windows. If
 they both pass, then you can then request the user's identity.

 This allows you to implement core security features based on the interface
 for features like ODBC or REST services that are built-in, and then layer
 additional security for the user's procedures. You get the flexibly to
 define user accesses for web interfaces, or other stateless interfaces
 like EDI and web callouts while still leveraging existing functionality.
 This style of identity management also allows a developer to hook into
 other centralized authentication systems, like ActiveDirecotory or
 OpenLDAP for role management.

 In addition to external role management, it also allows the developer to
 interface with external login methods like biometrics (fingerprint readers
 and retina scanners) or single sign-on interfaces. When your company
 acquires another company, this sort of flexible thinking will make it
 easier to integrate their scheme with yours.

 Consideration for Roles Management

 It is really easy to build a system that can become very complex to
 manage. As your LOB application becomes more customized, developers may
 establish role after role arbitrarily. Then, in the future, managing or
 remembering what each of the roles do, and why, becomes troublesome.
 Discipline is key.

 When a role is created, a developer should provide an explanation of what
 the role is used for, where it was used, and why it was created in both
 the role record, and within the application code. There are many times
 when a role will trigger some kind of override or additional access logic,
 and the user will need to see why they do not have access to do something.
 They will also need to know who has the access they need.

 Another often overlooked feature of role management is remote
 authentication. There are many times when a supervisor needs to give
 access to an employee, but they are not physically present, or cannot be
 physically present for one reason or another.

 A simple phone call to the supervisor should allow them to provide the
 proper authentication without giving away their password. A good way to do
 this is a simple mobile app that a supervisor can access to provide this
 authentication.

 Prototype

 A simple prototype of an Application Identity Management system would be:

 USER.SECURITY

 This would keep track of the user security information. Its only purpose
 is to authenticate the user with the LOB application. This would be a user
 specific settings needed for login.

 Key: UserId
<1> = Encrypted Password
<2> = Date
 Create
<3> = Time Created
<4> = Password Expire
 Minutes
<5> = Idle Expire Minutes
<6> = Password Set
 Date
<7> = Password Set Time
<8> = Last Login Date

<9> = Last Login Time

 INTERFACE.SECURITY

 Interface security is used to provide access to specific interfaces,
 devices, and processes. It is not specific to a user, but could be. It is
 designed to provide independent security options based on type of
 interface instead of type of user.

 Key: InterfaceId (ANY, TELNET, API, EXCEL, WEB)
<1> = Date
 Created
<2> = Description of what the interface is for
<3,n>
 = Inherited InterfaceId - Interface Id to use as the base settings, that
 this interface will be modifying.

 SECURITY.ROLE

 This role security is used to define what users and interfaces have access
 to. Each business process, screen, or API interface may have a RoleId
 here. This would define if the user has access to this role, or if the
 interface has access to this role.

 Security Roles can inherit the settings from other roles. This provides a
 lot of flexibility, but also provides additional level processing.

 Key: RoleId
<1> = Date Created
<2> = Description of
 Role
<3,u> = UserId
<4,u> = UserId Date Added
<5,u>
 = UserId Grant/Deny
<6,i> = InterfaceId
<7,i> =
 InterfaceId Date Added
<8,i> = InterfaceId Grant/Deny
<9,r>
 = RoleId to Inherit
<10,r> = RoleId Grant/Deny

 API

 AUTHENTICATE.USER.ID - This API would be used to authenticate a USER.ID.

 Request:

 USER.ID - The USER.ID to authenticate.

 USER.PASSWORD - The USER.PASSWORD to use to authenticate.

 INTERFACE.ID - The INTERFACE.ID that is being used to authenticate.

 ROLE.ID - A ROLE.ID to check the USER.ID against.

 Response:

 STATUS - Evaluates to success, failure, or expired.

 DESCRIPTION - A human readable version of the response.

 TOKEN - An authentication token that can be used for stateless and
 non-persistent connections.

 AUTHENTICATE.USER.TOKEN - This API would be used to authenticate a token
 either provided by AUTHENICATE.USER.ID or another token system.

 Request:

 TOKEN - The USER.ID to authenticate.

 INTERFACE.ID - The INTERFACE.ID that is being used to authenticate

 ROLE.ID - A ROLE.ID to check the token against.

 Response:

 STATUS - Evaluates to success, failure, or expired.

 DESCRIPTION - A human readable version of the response.

 GET.USER.ROLES - This API would be used to get a list of all the roles the
 user is part of.

 Request:

 USER.ID - The USER.ID to use in retrieving roles.

 TOKEN - If USER.ID is not provided, then TOKEN should be so the
 application knows who made the request.

 Response:

 ROLES - List of all the roles (included inherited roles) for this user.

 AUTHENICATE.USER.ROLE - This API would be used to check role access for a
 user. This would be done after the user has logged in.

 Request:

 USER.ID - The User Id to get roles for

 TOKEN - If userID is not provide, then TOKEN should be so the application
 knows who the request is for

 Response:

 STATUS - Evaluates to valid, invalid, not authenticated, or override
 request.

 DESCRIPTION - A human readable version of the response. On override
 request, display the reason for override and who can override.

 Conclusions

 Modern LOB applications aren't just about the data anymore. They are also
 about the APIs that the LOB provides. A developer needs to have an
 identity management system that provide the flexibility to handle not just
 data security but interface and procedures management.

 Business Tech: Flawgorithms

 Business Tech: Flawgorithms

 CHARLES BAROUCH

 HDWP

 Johnny is a boy. Johnny has freckles . Therefore, all boys have
 freckles. This is a syllogism: two true statements which are followed by a
 false conclusion which seems to be supported by the facts. I've met a lot
 of business professionals who make decisions based on logic which is even
 less solid. Are you running a business â�� or supporting one â�� based on
 flawgorithms?

 Product vs. Project

 One of my pet peeves is when I buy a product and find out that I've
 received a project. Recently, I worked on a Drupal site. Granted, I didn't
 buy Drupal (in that I was not charged for the software) but I bought it in
 the sense of my spending time, trouble, and effort on it. Annette, my new
 friend, picks a template. She and I, both technical, dig in, looking for
 how to change the pictures on the slider. Guess what? We find instructions
 on how to edit the HTML of the module. There is no interface for
 selecting the pictures. Everything is hard coded.

 This theme is a project . Software that requires you to poke at
 the source to make it work isn't complete. A product should have
 interfaces for the obvious needs. I accept that something esoteric â�� I
 need to handle currency fluctuations by adding a variable conversion
 charge, for example â�� might require custom programming, but that should be
 the exception. Not knowing the difference between a finished product and a
 work-in-progress is a logical failure; a flawgorithm.

 I'm sure all of us have seen this in far more critical settings. Annette
 simply picked another theme and we were back to work. When the project is
 your primary business software, that's another thing entirely. I watched a
 client move off of MultiValue and onto a project that was perhaps fifteen
 percent of what they needed. This was over a decade ago and I still recall
 walking into their office to the daily â�� sometimes more than daily â��
 complaint: "The developer is pushing an update. I can't do any work until
 it finishes." Every change required a software change. Nothing was
 parametric.

 Go With What You Know

 If you know me, you know that I never like to find myself with only one
 tool for a given job. I use pretty much every flavor of MultiValue. I use
 several brands of SQL. I'm a big proponent of using no database on certain
 classes of projects. Despite that, I built a product with absolutely the
 wrong technology recently. My flawgorithm? Go with what you know.

 I love Delphi. I've built web tools with it, GUI apps, and even some basic
 Android stuff. When Dan Schmitt and I developed BeBackBy, I reached for
 Delphi. On the Android side, it works well. For the iOS side? Not so much.
 Long story short: I'm learning Cordova.

 Business as Usual

 I recently attended a talk by David Jordan. If you don't know him, look
 him up. Very smart guy. I know him from our time together on the U2UG
 board. He tells the story of the tea kettle manufacturers who, using big
 data, see that they sell more black kettles than white. The flawgorithm?
 We need to cost-reduce white tea kettles to increase sales.

 Why is that a flawgorithm? Because they are only analyzing their own data.
 Big data is frequently about looking at your own. That means that any
 color of kettle not already in production was omitted as a sales option.
 It means that only their own pricing history was factored into the
 analysis. It leaves style and other factors out of the equation.

 What was David's recommendation to these theoretic kettle makers? Step
 back. A tea kettle is a means to an end: They make hot water. The hot
 water business includes K-Cup machines, which cost more than tea kettles
 and have better margins. The takeaway? data can be accurate and still lead
 to inaccurate conclusions. Looking wider for the data - looking at your
 business from a wider perspective - offers more solid logic.

 Baby Carriages

 In Disney's Sleeping Beauty, Maleficent sends her goblins to look for
 Aurora. Sixteen years later,one of her goblins announces that they've
 looked in every cradle. That's right, they'd been using the original
 search parameters â�� she's a baby â�� for sixteen years.

 Before we snicker at that, ask yourself how much of your business software
 has been unaltered for a decade or more? Are you running a business with
 embedded logic that hasn't been reviewed in a very long time? How many of
 us are running reports that tip over baby carriages? We all need to
 examine our systems for flawgorithms.

 QM and VFS

 QM and VFS

 BRIAN LEACH

 Ladybridge
 Systems Ltd

 I had a chance last month to look at an aspect of the QM platform that I
 had not used before: The VFS or Virtual File System.

 The background to this was an interesting request from a client to look
 into various options for integrating their application with SQL Server.
 Not just as a reporting base or data warehouse, which is bread and butter
 stuff, but to host their live data in SQL Server and have their
 application make use of it for transactional purposes. Having pointed out
 the obvious risks and performance issues to be expected by going that
 route â�� given that they have a very large, complex, mature and hard
 working UniVerse application managing huge numbers of complicated
 transactions and talking to numerous upstream and downstream systems â�� and
 the fact that a MultiValue application is designed in a fundamentally
 different way to an SQL one â�� I duly set out to assess the current state
 of various technologies that might allow this.

 The actual findings are commercially sensitive. I'm not going to reproduce
 those here. Nor am I going to list out all the various options that I put
 before them, or recommend one option over another. The goal was to lay out
 alternatives so the client could decide which ones would merit further
 consideration.

 I knew that QM had a virtual file system, but I had never had a reason to
 play with it. It's also a fairly undocumented experience, with only a
 couple of sample drivers to look at, neither of which was a good model for
 what I was attempting. I needed to develop a proof of concept driver that
 would talk â�� at reasonable speed â�� to SQL Server.

 Since this was under the auspices of producing a report, development time
 and budget would be extremely limited. But I wanted to see whether it was
 technically feasible to create something that might perform similarly to,
 for example, MVON. I knew the experience might not be as smooth and
 streamlined as the On Group's approach to running MultiValue on SQL. The
 end result was likely to be more of a hybrid approach than MVON's seamless
 model.

 As you can tell, I had already been highly impressed with the way that
 MVON 'just worked' straight out of the box and how quickly I had been able
 to get a demo system running on MVON. So, I knew that was a high benchmark
 to aim at.

 Using VFS

 The QM VFS is a means of redirecting file access. It works on a file by
 file basis, allowing you to mix and match VFS files with regular files.
 You can, for example, host a data file in VFS and the associated
 dictionary as a native QM file.

 To access a file using VFS you need three things:

 	
 A VFS driver.

 	
 A VFS server entry.

 	
 A modified file pointer.

 The VFS driver is the fun part but I'll speak to that later in this
 article. For now it's just worth saying that there are two types: (A)
 Internal drivers written as QM Basic classes and (B) external drivers
 written in native code. For various reasons my driver is external. I did
 also model an internal driver but found it too limiting. In other
 situations the mileage may vary.

 A VFS server is a logical collection of information that defines a
 particular data source. It combines the name of the VFS driver with
 connection and host details, so you could have a generic driver called,
 say, demovfs (for the want of anything original), and it could talk to a
 number of different databases or external systems for pulling and pushing
 data. It is similar in that regard to an ODBC data source definition. The
 VFS server definition is created using the SET.VFS.SERVER command, which
 is necessary as it encrypts the password for storage.

 To add a VFS server called 'DEMO' with an external VTS driver of 'demovfs'
 accessing a remote data source named 'MY_DBSERVER' you would need the
 SET.VFS.SERVER command as seen below.

SET.VFS.SERVER DEMO EXT demovfs MY_DBSERVER my_username my_password

 The password is stored, encrypted, and passed to the driver since you
 don't want it to prompt you for authentication information when it is
 actually running. It could be a dummy, as the driver can decide exactly
 what it wants to do with the parameters it is given.

 The LIST.SERVERS command lists your available VFS servers.

:LIST.SERVERS
VFS Servers..... IP address.............. Port... Sec Remote user name....
DEMO Handler: EXT demovfs
 MY_DBSERVER 0 No demo

 Once you have defined your server, actually making use of it is
 satisfyingly simple. Create a file pointer with a path name composed of
 the following:

VFS:server_name:target_name

 The target_name is just a string that just gets passed through verbatim to
 the driver to identify the final data source. In my case I'm using the
 name of the SQL table or view, but it could be absolutely anything just so
 long as it is meaningful to the driver. You might, for example, create an
 IMAP driver that could interrogate a mail box passing the name of a folder
 or tag.

 So to create a VFS file called MY_FILE that will instruct the DEMO server
 to access a thing called MY_TABLE (you get the naming convention), you
 would create a QM file as follows. Note that I'm still defining a local
 dictionary for the file.

:CREATE.FILE DICT MY_FILE
Created DICT part as MY_FILE.DIC
Added default '@ID' record to dictionary
:ED VOC MY_FILE
VOC MY_FILE
3 line(s)
----:
0001: F
----:
0002:
----: r VFS:DEMO:MY_TABLE
0002: VFS:DEMO:MY_TABLE
----: fi
'MY_FILE' filed in VOC

 You can now access MY_FILE just like any other QM file: listing it,
 reading and writing records and generally having fun. All of these actions
 just get passed to the driver via the VFS API and it can decide what to do
 with them.

 The VFS API

 The nice thing about VFS is the API itself. The nice thing about the API
 is what it leaves out.

 The VFS API is really, really simple, and makes absolutely no assumptions
 about what you want to do with your virtual files under the covers. Where
 other approaches might, for example, use a mapping schema that resolves
 into generic SQL statements being passed to an ODBC-like driver, VFS works
 at the logical MultiValue level and lets you get on with the job of doing
 your own mapping underneath. It knows that you want to open a file, read,
 write and delete some records, possibly clear the file from time to time
 and run selections, but how you do that is entirely up to you.

 Now there is no doubt that if you want to access an SQL database and
 haven't got the knowledge (or time, or interest) to set up all the mapping
 and connection details yourself, having a mapping schema is a great
 benefit. But it also restricts you to whatever that schema will allow. If
 the schema is determined to turn your writes into generic UPDATE, INSERT
 and DELETE commands you don't have the choice to use alternatives such as
 SQL Server specific MERGE or TRUNCATE statements. If you have a tame TSQL
 guru who is willing to churn out highly optimized stored procedures, or
 even to make use of the CLR features inside SQL Server, then again you
 need a tool that will allow you to make full use of those.

 Mapping the Data

 In my case this was only a proof of concept, so I created a simple driver
 in C# that expected each target to be either a table or a view. The SQL
 Server .NET client exposes a schema API through which you can easily
 discover the layout of any table or view. I wanted to test two layout
 options: a simplified storage consisting of just a primary key and a
 varchar(MAX) field to hold a record body just as it would appear in a
 MultiValue file; and a normalized layout consisting of columns of
 different data types that would correspond one to one with fields in the
 record by their ordinal position. The only requirement was that both
 layouts would require a primary key, again discoverable though the schema
 API. The driver would be responsible for translating between the
 MultiValue representation and the columns in the table or view, and would
 handle some internal niceties as turning PICK format dates into SQL Server
 equivalents [Figure 4].

 [image: Figure 4]

 Merging Data

 Writing to an SQL database is a more painful operation than writing to a
 MultiValue database, not the least because of the differentiation between
 an insert and an update. Often the combination is termed an upsert
 operation, which is normally handled by either (A) testing explicitly for
 the presence of a row with the given primary key before deciding
 whether to insert or update; or (B) by attempting an update and following
 this with an insert if it fails. Both of these are tried and tested
 methods and work across different database platforms.

 The MERGE statement in SQL Server combines these into one and can be
 quicker in some circumstances, though with a verbose and ugly syntax. It
 is normally used for merging the content of two tables, but your statement
 can just select the input parameters as the merge source.

 Also, like all SQL Server statements, it needs to be planned and optimized
 and so only comes into its own through reuse. SQL Server will cache and
 reuse the latest query plan where possible, but to ensure a level of
 performance you almost always need a stored procedure: so the driver
 discovers or creates such a procedure on the first write request it
 receives to a given VFS file. If the file is only ever read, no procedure
 is generated. Further, the driver caches the parameterized command objects
 so they are there ready for use and it doesn't have to waste time checking
 the parameters again. These are all small things, but the cumulative
 performance benefits can stack up.

 So having created (and unit tested!) the generic SQL Server actions, it is
 time to turn to the VFS part.

 The VFS Driver

 As I wrote above, a VFS driver can be implemented in two ways: as an
 external driver written in a native language such as C or C#, or as an
 internal QM Basic class. Both internal and external drivers offer the same
 API but with one important difference. For readers more familiar with
 other MultiValue databases, QM Basic has object oriented features similar
 to VB or VB.NET that sadly the other manufacturers have never picked up -
 the local functions in U2 are a poor alternative. QM classes are written
 in QM Basic and surface methods as local subroutines and functions.

 The internal driver, the one written in QM Basic, is much simpler to
 develop. There is a template class that you can copy and from there you
 can simply fill in the methods provided: they all have reasonable comments
 and the parameters are meaningful. However, since QM Basic doesn't talk
 directly to SQL Server in the way that I wanted, I could only work the
 internal driver via an intermediate service application over a socket
 connection. Also, a new instance of the class is created for each separate
 VFS file being accessed: and the driver persists for as long as the VFS
 file is open, which means that unless the file is opened to a named common
 the driver is constantly being created and destroyed. For a staged
 architecture, this made it very inefficient as it had to continually
 reinitialize to reestablish its connection with the service.

 The external driver, on the other hand, could be written as .NET
 executable (or any other language that can communicate through the API)
 and so did not need an intervening service to talk to SQL Server. More
 importantly, it is launched as a single instance for each logged on user
 accessing files through a VFS server definition. Instead of associating
 each VFS file with a separate instance of the driver, and the internal
 driver does, a file identifier is simply passed to or from the API on each
 call and the same driver manages a whole group of files. This meant that
 the driver could itself maintain a single connection to SQL Server for
 that user for lifespan of their login session.

 The first request to open a VFS file causes QM to create the driver by
 starting the executable and passing to it the identifier of a named pipe.
 This can act like a TCP network socket, but will also route via shared
 memory for speed if both end points are on the same machine. The
 executable must open its end of the pipe and can then receive commands and
 send responses through the pipe to the QM session. One complication is
 that under .NET there is support for named pipes, but only in a specific
 configuration that does not match the way that QM uses them, and so a