Downloads: http://www.intl-spectrum.com/mag/MARAPR.2017/default.aspx
Innovate or your application will die a slow death. Harsh words, but we have been hearing it, and saying it, for years. Our employees and management are demanding more and more from the existing systems and business applications. Most companies have come to rely on their business software and systems more than they rely on their employees.
We don't call a jacket a lapel just because a jacket has a lapel. Likewise, we need to stop calling MultiValue a database just because it has one. There's so much more. Underselling the power we bring to every project is a thing of the past.
Moving data in and out of MultiValue requires us to understand all of the different ways that we may need to transform the inbound and outbound information. Bennett offers us a practical guide to JSON (JavaScript Object Notation).
The MD5 message-digest algorithm is a widely used cryptographic hash function producing a 128-bit (16-byte) hash value, typically expressed in text format as a 32-digit hexadecimal number. MD5 has been utilized in a wide variety of cryptographic applications and is also commonly used to verify data integrity.
SQL is designed for a specific type of optimization. MultiValue is designed for thingedness. Charles explains this odd term and gives some insight into the cultural differences between these two approaches.
Nathan Rector
Innovate or your application will die a slow death. Harsh words, but we have been hearing it, and saying it, for years. Our employees and management are demanding more and more from the existing systems and business applications. Most companies have come to rely on their business software and systems more than they rely on their employees.
Despite this, companies have cut back on IT departments over the years. And they have not spent any time rebuilding them. Corporations still look at their IT budgets as 80% on IT maintenance of existing systems, and only 20% on new innovations or R&D. This kind of 80-20 rule that companies have been using for years is a trap. We've been forced to fall into it.
This fosters a culture where forsaking innovation is often a financial necessity. Shifting that already thin 20% to solve short term issues many times becomes the long term plan as well. Today's business systems are falling further and further behind the requirements of today's users. This is impacting business productivity, and many managers don't realize the depths of the problem.
Some of this is due to lack of planning, which often stems from a lack of knowledge on what can or cannot be done within their existing business systems. Another reason is the, "I can do it better and cheaper" concept that is so prevalent in the MultiValue community. The problem is that is correct only part of the time.
Since the MultiValue environment is so efficient and effective for developing applications, ones that don't take much time or resources, we have a tendency to overlook all the tools that exist in the marketplace. Yes, DIY (Do It Yourself) works for us, over and over again, but it is not the only answer.
We can't afford to forget that the wheel has been invented already. We face problems which have already been solved. Sometimes, instead of home-brewing a tool or application, we need to do the research and spending required. Too often, we look at the tools, and say to ourselves, "I can do that better and cheaper," and spend the R&D budget developing what we could have purchased, a solution which actually is better and cheaper. Some of our DIY solutions are wonderful, but some eat up a part of that 80% that should be spent on other maintenance.
Take a look at the ROI with a few back-of-the-envelope figures: sixty to two hundred hours of your time spent developing a tool is likely to cost you around $4K to $14K. In many cases, that $9K — give or take — you have spent DIY-ing would be enough for the license costs, plus a few years of support fees.
Now, look at the maintenance costs if you write the tool yourself. Twenty to five hundred hours a year on maintenance and additional functionality, as needed. Again, this ends up costing around $4K to $35K a year. Most yearly maintenance costs for these tools are less that the $4K. Allowing for third-party tools as part of your solution options is well worth it. We get some problems solved by others, which allows us to spend more time on improving and innovating our core business systems.
We are charged with building the business software framework that can support the new technologies your CEO is demanding you put to use. IT isn't only on a monetary budget; our time is also a limited resource.
Now would be a good time to do a little research to see what tools exists that would make your job easier and cause your IT budget to be less strained.
Nathan Rector
When we call an MV server a database we are identifying the core aspect but we are leaving a lot of the story untold. Our MV servers are full-fledged application development environments. They include a database, an application development language, a powerful scripting language, and a natural language reporting system. Telling the whole story communicates the value more clearly.
I'd like you to consider referring to it as The MultiValue Technology Framework. This better communicates that our "database" is really several important pieces that are seamlessly integrated together. I know I'm asking you to make quite a perspective shift, but our systems should get the credit they deserve.
There is a lot that the MV servers provide right out of the box. I've mentioned a few in the opening paragraph, here are some more:
Let's untangle some terms that may help us to recast management's view of our tools.
Data Store vs. Database
Data store - a repository of persistent storage and management for collections of data. This can be anything that holds data electronically. CSV is a valid type of data store.
Database - includes the tools (and means) to organize, search, index, retrieve, combine, parse, and/or update data found in a data store.
These two terms are often thrown into the Relational vs. NoSQL debates because not all NoSQL data stores are databases, but all databases (NoSQL and Relational) can be used as a data store. The key difference: The database's ability to provide tools in addition to storage.
SQL vs. Relational Data Store
SQL (Structured Query Language) is a query language which is the API (Application Program Interface) that a relational database uses to provide an interface to their data structure. Relational databases were designed specifically to optimize the use of SQL by forcing the data store to keep the data in 1NF (First Normal Form). This caused the terms relational database and SQL database to be treated as interchangeable.
Hence the confusion when someone asks, "Are you using an SQL database?" Well, no, MultiValue databases are not databases that store information in a format that is optimized for 1NF. At the same time, yes, because nearly every MV database does support the SQL query language.
MultiValue query (sometimes called Access, English, ReTrieve, etc.) is a query language and MultiValue BASIC is an API, SQL is a tool for CRUD (Create, Read, Update, and Delete). None of them define their data storage format. They just leverage it in an optimized fashion. Several MV flavors allow you to select a back-end data store without any change to your queries or programs. Dan McGrath did an excellent presentation at the last Spectrum show on how to program in mvBASIC but CRUD in Big Table, which is Google's NoSQL data store.
The key idea here is that while mvBASIC and MultiValue query both allow easy interaction with the MultiValue files, they are not what define the MultiValue data store.
Flexible Data Modeling
For a long time flexible data modeling was looked at as a cheap hack and was frowned on by the traditional database administrator. That is no longer the case due to the rising popularity of NoSQL databases. Spun one way: SQL is well structured to enforce uniformity of methods while NoSQL (including MultiValue) is undisciplined. Spun the other way: SQL is inflexible and does not model the real world while NoSQL (including MultiValue) offers the option to model different data differently, either as an aid to clarity or for optimization.
MultiValue is still quite unique in our data modeling compared to other NoSQL databases. We can do one or more (or all) of the following in the same database, even sometimes in the same database table:
Evolution From SQL to NoSQL
Relational databases are designed to enforce data structure and consistency on developers. That really is its whole design: Impose data requirements, restrictions, and structure. The critical assumptions are that data types are the most important aspect of any field. It assumes that single values are the only approach to data architecture.
NoSQL, including MultiValue, is designed to store, distribute, and access data using the best method for each case. NoSQL technology was originally created and used by Internet leaders such as Facebook, Google, Amazon, and others because SQL has trouble scaling in complexity. These giants require database management systems that can write and read data anywhere in the world, while scaling and delivering performance across massive data sets and millions of users. In the world of big data, these are some of the biggest.
NoSQL has evolved to meet the needs of high-speed transactional input/output. It is predicated on the idea of constantly evolving data models. And it does that while still keeping the enterprise-class features associated with relational databases. In this way, MultiValue is absolutely a world class NoSQL database.
If you don't think we've been evolving with the times, go to your vendor of choice and ask for the last few years worth of version change notes. Just because your shop may not be using the features doesn't mean they aren't there. If your shop isn't using the newest features, maybe they should be. There's a lot to gain in the newer releases.
MultiValue vs. NoSQL Data Store
Conceptually, most NoSQL data stores are not much different from what MultiValue developers have used for many years. Believe it or not, we have been ahead of the innovation curve for years. Sometimes we do a poor job of explaining (bragging) about MultiValue because we don't realize how hard other data stores and query engines have been working to keep up with us.
Let's look at a couple of examples. For reference, here's the SQL 1NF approach to data:
Key | Name | Dollar |
129k | Nathan | $1234.00 |
128p | Nathan | $9881.00 |
515q | Nick | $9881.00 |
NoSQL Key-Value Data Stores
Key-value data stores emphasize the read/write of non-transactional data. The data is stored as a non-structured data element with a single value, and are accessed via a unique primary key. This type of data structure is best for applications that need fast input/output of information and don't care about structure of the value stored in the key. The term single value is misleading because the value might be one document or one JSON string, not just one number or a single word.
Key-value example:
129k.dollar | $1254.00 |
129k.name | Nathan |
NoSQL Document Stores
Document stores emphasize the storage of JSON or XML. Similar to Key-value except that it provides query and indexing on popular fields found within the JSON and XML data elements. This allows developers to store JSON information natively, but still provide a schema to create a stored data model that can be queried.
Document store example can be found below.
129k | {"dollar":" $1254.00","name":"Nathan"} |
NoSQL Column Stores
Column stores are best stylized as an inverse of a relational row/column data store. While not originally a NoSQL data store, but more of a relational indexing feature, it has grown into a data store that is popular for specific types of data models.
Instead of each column being a field of information within a row, the column is the primary concept, and the row is secondary.
Column store example:
Name | Dollar | ||
ID | Value | ID | Value |
129k,128p | Nathan | 129k | $1254.00 |
515q | Nick | 128p,515q | 9881.00 |
NoSQL Graph Stores
Graph stores are really one of the most innovative data storage methodologies in the NoSQL world, but it is relatively limited in its applications. Graph data stores use structures that link the relationships between the data of each record. This is a very specialized format that allows very fast BI, analytics, and data mining. The relationships need to be defined as they would be in a traditional schema, but the data is categorized, reduced, exploded, and processed so that the inter-relationships are easily queried, instead of querying the data itself.
Graph data example can be found below
Enterprise-Class Features
Any LOB (Line-Of-Business) application will need some if not all the enterprise-class features. This has been a major argument against NoSQL. Fortunately, this is one of the places where MV is ahead of the other NoSQL players. MultiValue databases have had enterprise class features built-in for many years.
The features that are often looked at are:
Security
Access and update security provides the ability to control individuals, and/or applications, providing a sufficient granularity to the security of the data, processes, and endpoints. Most existing relational databases excel at table and field access security but lack strong endpoint security. Modern application developers have since moved beyond the need for security on individual fields within tables due to the ongoing evolution of application design. Since most databases provide access to the data through CLI (Command-Line Interface) endpoints and direct SQL query statements, only restricting access to fields and tables at the query level is no longer a winning strategy. This is part of the problem with SQL: It only supports one way to do things. And that way was defined in a previous age. Modern hardware, speed, programming languages, and user-driven demands are all moving away from that aging model.
I always loved this misguided quote from Ben Rossi, arguing for field security: "And even where security can be added to applications, this puts a huge burden on the application developers, not to mention the additional cost and time implications." < http://www.information-age.com/putting-enterprise-nosql-acid-ambiguity-out-123458126/ >
The reality is that most modern application developers are placing the security into the application regardless of the database security. The main reason for this is that most applications have to use security for the presentation model, rather than the rights to the data itself. It is about what the users can see, access, or update, not about what the applications can access or update.
If there is security on the database tables, then the application developer has to address the security violations and present UI elements to notify the user of issues. As an application developer, that makes database security a burden more often than it is an asset. Again, since most applications embed CLI scripts into a full blown GUI, the complexity of application development has evolved beyond that level of granular security.
Encryption
Database storage encryption is rising in importance because enterprise systems are routinely in danger of being hacked. This is a feature that you should implement as a must. Payroll and any other sensitive data that can be used for user identity theft should be routinely encrypted. The same goes for anything which might be a target of industrial espionage.
Data theft is no longer limited to hacking users' accounts; mining the raw bytes of your hard drive for interesting information is becoming easier. In additional to that, our backups are often not encrypted, but are routinely being saved to hard drives on the network. Those trusty old backup tapes weren't network accessible.
ACID Compliance
This has always been a stickler for database comparisons, and a requirement for the enterprise checklist. It is also something that relational databases have always been good at due to the fact that they are designed to enforce data requirements on developers. When working with 1NF, it is very difficult to do something incorrect with your data from a compliance standpoint. This enforcement is often an issue with developers that have constantly evolving data models, but until the NoSQL database started being used, they didn't know there was any other way.
So naturally, if a database didn't enforce ACID, it was wrong ! That was the traditional way of thinking about systems. The interesting thing about ACID in modern transactional applications is that the code takes care of that anyway. If a primary key doesn't exist in the database, the application has to respond to the error and correct it or notify the user. So to keep from having to address the data error after the fact, application developers are moving to control the front end of the application process, instead of the back, where ACID would normally be enforced. The requirement for ACID is more about "we have always done it like that," than any specific application requirement.
For many developers, the primary reasons for ACID were dead before they started in the industry. It comes from a time when databases existed on a single machine, and issues with multi-nodes or servers never had to be considered. It was built to help with transactions boundaries, but when you get into applications development, transaction boundaries aren't always clear. ACID's attempt to manage consistency imposes delays on database updates when you have more than one node or machine in the mix. Because it isn't optimized for the realities of modern networks, ACID tests must check all the nodes, or servers, to verify that the information exists. If it doesn't, ACID issues a roll-back to the application because of a perceived sync error.
Since ACID across clusters, nodes, and servers is very hard and can cause bigger issues, it is often turned off or ignored except for the simplest cases; for example: Does a customer record id exists? Many ACID shops are ACID in name only. Full implementation can put you out of business.
Replication
Even though ACID interfaces are supposed to include support duplication and replication, replication is often looked at separately from the ACID requirement. And it should be. Replication is often more important than ACID in modern applications. Business nowadays require 24x7x365 on their servers. Replication makes that possible.
It isn't always about backups though. Replication is also a way to support reporting servers and data warehouses. That means that replication is not always about identical data, and that's another reason ACID's day has passed.
Get Close to the Data
Most NoSQL databases and relational databases have had a problem that MultiValue does not impose on its application developers. Non-MV systems make it a challenge to get as close to the data as possible. There are a lot of reasons we want this closeness, but the main reason is performance. That may be hard to fathom if you grew up in MultiValue. Think about it. Why would you design a database that doesn't prioritize ease of access for developers?
Any large or complex application requires interaction with large volumes of data and the relationships between that data and other data within the database. Most of these relationships are not schema defined, but instead are dynamic. They have to be calculated on-the-fly.
Contrary to what database administrators often believe, the traditional database is just a place to persist data for use by an application at a later date. The database by itself will not keep the data fresh and up-to-date without an application and/or user using it. If it doesn't get used, it gets old and stale.
As data volumes grow in the database, the amount of processing that has to be done by the application grows as well. If you have to work with large datasets, then processing the data as close to the database as possible decreases the amount of time it takes to get an answer to a specific business process.
Relational databases tried to address this by creating transaction scripting (T-SQL, PL-SQL, etc.) to facilitate data processing as close to the data as possible, but transaction scripting is still limited by the fact that relational databases are primarily focused on storing and retrieving data, not processing and using the data. As I keep saying, SQL was designed based on outmoded assumptions. Unfortunately, if you look at many of the NoSQL databases currently being used, their transaction scripting is still just as primitive, if not more so, as their relational database counterparts.
They both depend on other application development languages to do the processing of the data. This means that the data has to be transmitted from the database to the application, processed, and then returned to the database with changes, updates, or additional queries based on the processing. Literally speaking, they are required to handle data in a highly inefficient way. This is not a failure of the SQL model or the various NoSQL models. They could implement more robust close-to-the-data tools. We've had them since the inception of Proc and mvBASIC.
The performance of accumulating the datasets and transmitting the datasets to an application becomes a bottleneck. Even with tricks like view, cursors, and transaction scripting, the database is still relegated to just retrieving the data and pushing it (in bulk) to somewhere else to be processed, and then pulling it back to be stored.
This processing bottleneck was one of the problems that NoSQL databases were trying to address, by changing the way the data was stored. They are predicated on the belief that doing the wrong thing (shoveling data) faster was the solution. The retrieve time is decreased, compared to SQL, so the application doesn't have to wait as long to process the remaining data. But, as you can see, NoSQL databases only address one aspect of that performance bottleneck, the retrieving and storing of the data itself. That still requires the data to be offloaded to the application in order to do additional processing, parsing, or combining that wasn't built into the database schema.
MultiValue does not suffer from these performance problems. It never has.
Tiered Application Architecture
We can see some of the value provided on the database storage side of things. Let's now look at the application architecture that the MultiValue framework offers.
We have all heard of the N-Tier application architecture. This is how most legacy applications and all modern applications are developed. Most developers usually choose between a 2-Tier or a 3-Tier architecture.
The two tiers in a 2-Tier architecture are the database and a client application, which work together[see below]. The client application generally includes all the business rules, workflow, and the data processing code. It exchanges information with the database. This is the simplest architecture, but it creates a lot of traffic between the database and client.
The three tiers in a 3-Tier architecture are: database, application processing (containing the business rules and workflow), and a client application (for presentation). This is the preferred architecture for most LOB applications that use relational databases[see below].
The 3-Tier architecture allows developers to put the business processing applications on the same machine as the database. By doing this, they get the majority of the application as close to the database as possible, so the processing time of pulling and pushing the data in and out of the database is decreased. The end result of the application processing layer is then transmitted to the client to be presented or interacted with.
When building modern MultiValue applications (GUI, Web, Mobile, IoT, etc.), we have a tendency to choose what we think of as a 2-Tier architecture. You really aren't creating a 2-Tier application, though. The third tier is inherent in the MultiValue model. Instead of the traditional independent layer pulling and pushing the data in and out of a database, our third tier is on top of the data, and therefore closer to it.
The MultiValue Database Becomes an Application Framework:
This is what sets MultiValue above being a database and qualifies it as an application framework. MultiValue acts as a tool to supply the structure and templates for constructing an application. And that's the very definition of a business-centric framework.
Any application framework generally allows all of the following:
The MultiValue framework is held together by mvBASIC, but also supports query, reporting, PROC (Procedural Control Language), and Paragraphs (Batch Scripts and macros). Many of the database management tools provided with the MultiValue system are written using mvBASIC.
What is included in the MultiValue framework:
The mvBASIC environment's features aren't news to MultiValue developers. We use them daily to create LOB (Line-of-Business) applications. But its real power is the fact that you can't get a full blown programming language any closer to the database than this.
This means any calls done to endpoints into the MultiValue framework will process, retrieve, and update the data without having to transfer it in and out of the database. Since the MultiValue framework also includes a process scheduler, a developer could run processes in a multi-threaded/parallel processing model. This is why MultiValue developers can write 2-Tier applications which provide the value of optimized 3-Tier applications.
Framework Endpoint
The MultiValue framework has built-in support for several different endpoints in order to provide applications developers different interfaces and protocols.
CLI (Command Line Interface)
Most databases have a command-line interface for database management, but that is all it's designed for. The MultiValue framework supports full user interfaces at the CLI level. Input, output, data validation, and many other features are supported through Telnet, SSH, and O/S shell scripts.
Web (REST, SOAP, HTTP)
The MultiValue framework has additional support for interfacing with web software frameworks, as well as the ability to directly present data through web services. MultiValue frameworks are not limited to just presenting data for other web frameworks to use. It can also be used to generate HTML, CSS, and JavaScript directly, using CGI as an alternative for the CLI user interface.
RPC (.NET, JAVA, PYTHON)
RPC calls are supported, allowing the MultiValue framework components to be accessed through .NET, JAVA, and Python. These interfaces are not limited to just interacting with the data, but are best suited to interact with existing MultiValue BASIC routines, which can act as efficient pre-processors.
SQL Mirror (Access/update SQL databases)
Even though the MultiValue framework includes its own database, and is optimized to work with that storage structure, it is not limited to the MultiValue database files. It can also interact with SQL data sources as natively as its own internal storage structure.
ODBC/SQL
As stated before, SQL is a query language, which is also supported through the MultiValue framework.
Conclusion
Stop trying to explain MultiValue as a database. It is so much more than that. The real power resides in the application framework it provides to developers.
MultiValue, in one line: A MultiValue system is an enterprise class business application framework with a built-in application development layer for 3-Tier programming that combines the power and stability of a relational database with the flexibility of a NoSQL database.
BENNETT BAROUCH
Expanding Your Toolkit is an occasional column explaining technology which can extend the reach of your system.
JSON (JavaScript Object Notation) — The name tells us that this is a way of notating the contents of a JavaScript object. As we will see, JSON is neither JavaScript-specific nor a full-featured object notation. So what's with the name, and more importantly, what is it really?
JSON was invented for use by a small group of JavaScript programmers who were much smarter about technology than they were about naming things.
By design, JSON is literally XML Light. Among other things, XML is the X in AJAX (Asynchronous JavaScript And XML). Douglas Crockford et al. wanted to use something simpler and smaller in the AJAX context. JSON is the result. You might say it's an application of the 80-20 Rule (or maybe the 99-1 Rule). JSON is not as feature-rich as XML, but it adequately supports a huge range of common use-cases more elegantly. Indeed, it may even be a good idea to force more sophisticated datasets into JSON's world, simplifying interfaces while lessening training and support costs for a service that then only requires its clients to handle JSON instead of XML. At the least, it cuts down on the complexity and size of the payload being produced, sent over the internet, and consumed — Crockford's goal.
It Supports Less Than JavaScript
If a JavaScript object has methods (which is very common in practice), they silently just do not show up when that object is expressed in JSON (via the definitive generator JSON.stringify()). This seems to reflect the fact that the use-cases Crockford et al. had in mind did not include transferring code between browsers and back ends, so it was a feature to ignore methods, automatically restricting payloads to items of value. Minimizing payload was a key objective.
There are other data types (maps, sets, and more) and special values (Infinity , NaN , and undefined) in JavaScript that also silently fail to be represented in JSON. You can, of course, create your own non-standardized, non-automatic, application-specific (or library-specific) encoding and decoding for anything , but that is something you may do with JSON, not something that JSON represents or that its standard generators and parsers do for you.
Perhaps this is because the backends, with which browsers communicate, are rarely implemented in JavaScript, and universal, automatic cross-language translations of uncommon items is a creature best left unprovoked. One can argue that if you need these things, then it should be application level code that deals with them in each language's own idioms.
It Supports More Than JavaScript
Oddly, JSON allows some characters in strings that are not allowed in JavaScript.
More importantly, JSON is not in any functional way linked to JavaScript — it's just badly named. JSON has proved so useful and widely used that there are JSON generator-parser pairs available for most web-oriented languages, including Perl, PHP, Python, Ruby, Java, ASP, C#, etc. Since the syntax is simple and the number of supported data types is small, creating a generator-parser pair is a modest programming task in any language for which a set does not already exist. (See this article on the International Spectrum website, for example.)
In practice, JSON is a language-independent data container used for more browser back-end and web service traffic than any other and is also used for configuration files and other storage purposes.
The Data
JSON allows for six kinds of data to be expressed. Numbers are integers and floats (with no distinction between them). Strings are runs of zero or more Unicode characters inside quotation marks. Booleans are true or false . Null is a data type with a single possible value of null . Arrays are collections of arbitrary elements, such as ["two" , 1 , { "pi" : 3.14159 }]. Objects are associative arrays, each element being an NVP (Name-Value Pair). For example { "dbType" : "Pick multi-value", "born" : 1965 } . As shown in these examples, array and object elements do not need to be of like type.
The Syntax
Strings are delimited with quotation marks (and not by apostrophes or so-called single quotes). Strings can contain problematic characters via escape sequences begun with a backslash (\). An array is indicated by square brackets ([]). An object is indicated by curly braces ({ }). A colon (:) is placed between a name and the its value. Names themselves are strings, not unquoted tokens. A comma (,) is used to separate adjacent array elements or object properties. Empty arrays and objects are allowed, as is nesting to any depth. Whitespace outside of quotation marks can and should be used to maximize human readability.
There is something to be said for a structured data format that can be completely defined in two paragraphs and serves so many actual use-cases that it dominates data exchange activity on the web!
Example
Let's look at a simple example [Figure 1]. This object holds information about a well-known duck.
Comments
When used for configuration files, the fact that JSON does not support comments is a drawback. One typically wants to annotate a config file with the reason each value there was chosen, and what factors should govern setting a different value. You can easily implement a file reader that strips comments and then feeds what is left into a JSON parser. Consider the following illustration of an obvious possibility that is trivial to implement [Figure 2].
Help is on Hand
As simple as JSON is, when you are new to it, using an online resource such as jsonlint.com will tell you when you have it right, or help you figure out where you went wrong.
Nathan Rector
The MD5 message-digest algorithm is a widely used cryptographic hash function producing a 128-bit (16-byte) hash value, typically expressed in text format as a 32-digit hexadecimal number. MD5 has been utilized in a wide variety of cryptographic applications and is also commonly used to verify data integrity.
While not as secure as SHA1, it is still used in many places for data integrity, version control, and other features that need unique one-way signatures.
MD5 Function
MD5 processes a variable-length message into a fixed-length output of 128 bits. The input message is broken up into chunks of 512-bit blocks (sixteen 32-bit words); the message is padded so that its length is divisible by 512. The padding works as follows: first a single bit, 1, is appended to the end of the message. This is followed by as many zeros as are required to bring the length of the message up to 64 bits fewer than a multiple of 512. The remaining bits are filled up with 64 bits representing the length of the original message, modulo 264.
MD5("The quick brown fox jumps over the lazy dog")
9e107d9d372bb6826bd81d3542a419d6
MD5 will detect even small changes in the string and cause the returned hash value to change. You can always read more about MD5 at:
https://en.wikipedia.org/wiki/MD5
UniBASIC Hashing
UniBASIC comes with hashing extensions in the form of DIGEST(). The DIGEST has SHA1 built-in. This allows you to use code like [Figure 1].
The subroutine found with this article is based on the code above, but has be structured to be interchangeable with non-UniBASIC versions of the MD5 subroutine also found on the International Spectrum Website.
Example
Output
CHARLES BAROUCH
Dystopia is the term used for any number of bleak, failed societies. In Science Fiction, computers, robots, and evil algorithms - AI (Artificial Intelligence) and DSS (Decision Support Systems) being two examples - are often to blame. The emphasis is generally on dehumanizing us by reducing our society to the data which describes it. Personally, I blame SQL.
To be serious, SQL is designed around the idea that optimizing data means optimizing the digital use of data. It is not designed for you, my organic friend.
What if we take a more human approach to data? Well, if you want data that has a human touch, we have plenty of options. NVP (Name-Value Pairs) offer a readable - human readable - label with each jot of data. Formalize that a bit and you are in the realm of XML and JSON. These three are certainly not machine optimized. They are people-centric, focusing on clarity to the reader over mathematical minimalism. If the AI uprising is your fear, your best defense is to skew the rules toward… well… us.
What About MultiValue?
MultiValue sits in the middle. I once heard, and often quote, Mike Ruane as saying that MultiValue is compressed XML. We use positions instead of labels, but we bring a structure that is more eyeball friendly than SQL. Think of it this way: I have to transform SQL data to share it. It has to become tab-separated, or XML, or some other decidedly non-SQL thing before it can move. Generally, this isn't just swapping columns for commas. SQL data is spread out and has to be unified and essentially re-architected before it can be transportable.
Given that moving data, dissecting data, and assembling data is a big part of what we do, having a database that can't do any of that easily is an odd choice. Unless, of course, you are in the thrall of the metal ones. MultiValue pays attention to speed, but it also has its bags packed at all times. Any modern developer who can tease data out of a comma-separated file can handle a string with @AM delimiters. Tell them the @VMs are embedded sub-strings and they'll probably be just fine with those delimiters as well. If we must dress it up for travel, subbing @AM to comma and @VM to pipe is often enough. When it comes to speed, the less we handle the data, the faster we can ship it.
Thingedness
XML, JSON and MultiValue also have another critical edge when it comes to readability: Thingedness . This is the term I coined to describe the ideal relationship between data and the user of the data. Here's where columnar databases and SQL databases fail the thingedness test: Can you point to a single record and associate it with a common, real world, thing? My XML, JSON, NVP, or MultiValue INVOICE file can have the entirety of an invoice in each record. One read equals one invoice. That's something a non-database person can grasp: one hundred invoices equals one hundred records.
While there are reasons to not do this — many excellent reasons — the closer your data gets to this model, the easier it is for the programmer, the user, and the architect to keep the entire data model in their head. As you approach thingedness, you approach clarity of concept. The data world has more in common with the human one.
With XML, JSON, and MultiValue, thingedness is achievable. The big difference between the three is that the first two have to be transformed to be used. MultiValue can chose to unpack its bags, but a MultiValue string is always ready to work.
Some of the Excellent Reasons
SQL is the extreme counter-argument to thingedness. It is based on the premise that the more you break something down, the better you can control it and account for it. There is merit to this approach if you are concerned with scaling up the size of your data. However, the more the complexity of your data scales up, the worse this idea becomes. There is a reason Google uses NoSQL to manage search. There is a reason that Facebook uses NoSQL
Still, SQL's popularity isn't random. For some jobs, the rules of SQL are the most rational ones. A good example is tool building. It is easier to generalize a tool, for reporting or analytics, when all data has a rigid uniformity of storage. The less creative the structures are, the easier it is to make new tools.
Moreover, forcing the table designer to specify field types and lengths helps keep the design focused on the use and intent of the data. Free-form data can often result in sloppy design. Working in SQL makes me a better NoSQL architect.
So, please don't damn the methodology out of hand. It has its place. Not every place, but I wouldn't want a pure thingedness database, either.
Where the Pendulum Stops
What we are looking for here is an acceptable level of atomicity. Simply put, we want to break things down just enough.
The middle is where the winners want to be. Reasonable control, but not the OCD of SQL. Reasonable thingedness, but not a rigid mandate to mirror the structures of the world. SQL doesn't do middle. Columnar doesn't do middle. XML and JSON can do middle, but they can't be operated upon directly for complex tasks.
MultiValue can do middle. We can create an invoice header record, with unified data, and split the details, each to their own record. We can keep multiple values in the header efficiently: Three contact names? No problem. Only one on the next one? No wasted space.
This is the balance between the AI/DSS view of data and the human view. We can scale in complexity because we can make decisions in our architecture and applications to treat elements of our data in sane ways.
How Does This Relate to AI and DSS?
As you saw last issue in the Animals program, we needed to construct the growing AI data in a way which favors decision trees. The less efficiently we implement, the slower our program will get as it matures. The infant version, the one with just a few started animals, will always be faster than the adult, with its extensive zoo, but here we aren't worried about relative speed, we are worried about being fast enough to keep the user feeding the program. The game Animals doesn't grow if no one plays.
As Nathan discusses in another article in this issue, the closer you put the data interaction to the data, the better your speed. Additionally, as my dad would point out, the more parts, the more that can break. Keeping the programming close to the data requires fewer transformations, less network bandwidth, and fewer steps. That makes it faster and less fragile.
When we implement DSS or AI, we are talking about extensive data. If we are being really smart about it, we are also expecting that data to keep growing. Real AI and DSS should eventually perform successfully outside of the original parameters. If you planned everything it does, it is more of a performing bear than a critical thinker.
You choice of data storage matters. Your choice of programming language matters. With enough time, trouble, effort, and money, you might be able to make a pig sing, but starting with a singer is probably a wiser move. Understanding the underlying effects of your choices raises you above decisions like, "Well, it was the only language I knew, so I wrote everything in Whitespace." Picking tools responsibly? That's real intelligence.
http://www.intl-spectrum.com/mag/MARAPR.2017/default.aspx
International Spectrum magazine's editorial mission is to be the premier independent source of useful information for users, developers, and resellers of MultiValue database management systems, open systems business database solutions, and related hardware, software, and peripherals. Published bimonthly, International Spectrum provides comprehensive coverage of the products, companies, and trends that shape the MultiValue marketplace as well as the computer industry at large - helping its readers get the most out of their business computer systems.
International Spectrum is eager to print your submissions of up-to- the-minute news and feature stories complementary to the MultiValue marketplace. Black and white or color photographs and diagrams are welcome. Although there is no guarantee a submitted article will be published, every article will be considered. Please send your press releases, articles, and queries to: editor@intl-spectrum.com. International Spectrum retains all reprint rights.
International Spectrum is a registered trademark and MultiValue is a trademark of International Spectrum, Inc. All other registered trademarks and trademarks are the property of the respective trademark holders.