

Mar/Apr 2018

Downloads:
http://www.intl-spectrum.com/mag/marapr.2018/default.aspx

Using OWIN Security with MultiValue Data - Part 2
Part 2 in our series on OWIN, the latest framework that .NET developers are using to build ASP.NET applications. Integrating your MultiValue data into the OWIN identity framework allows central management of user and customer credentials from within your existing LOB (Line Of Business) application.

Six Million Dollar Date
We've looked at how to wrap the OPEN statement (Six Million Dollar Open) previously. This time we are going to wrap one aspect of the INPUT statement, date handling. People outside of our industry may not consciously realize it, but dates are tricky things.

UniVerse and Python - it's here!
UniVerse has added Python as an integral part of the system, much like UniBasic. This article explores Brian Leach's experience with using Python within UniVerse, and how it works with the reset of UniVerse.

Business Tech: Same Difference
It is easy to see businesses as unique snowflakes but it's equally easy to see them as all the same. As professionals, whether employees or consultants, we need both perspectives in the course of our work life. While we can make the case the Amazon isn't eBay, we can also make the case that your accountant and your dog groomer are in the same business.

Advertisers

About Magazine

Advertisers

International Spectrum

Natec Systems

Ladybridge Systems Ltd

HDWP

PICK Programmers Shop

Zumasys, Inc

SJ+ SYSTEMS ASSOCIATES

Execu-Sys

[image: International Spectrum]

 Using OWIN Security with MultiValue Data - Part 2

 Nathan Rector

 International
 Spectrum

 In my last article, I explained a little bit about what OWIN was, and the
 basic setup of how to create a connection between an OWIN application and
 a MultiValue framework. This article is mainly focused on using OWIN's
 identity/security framework.

 Quick Review

 ApplicationDBContext â�� This class does all the work of connecting to the
 database and making the subroutine calls to return or update data.

 ApplicationUser â�� This class is used to hold information about the user,
 making it available for the rest of the OWIN Identity system. This class
 will call the subroutine, in out case SPECTRUM.OWIN.USER, and return a
 dynamic array of information about the user.

 ApplicationUserStore

 Now that you have the basis for the ApplicationUser class, you have to
 implement the ApplicationUserStore class. This class does most of the work
 connecting the data from the subroutine SPECTRUM.OWN.USER, with the rest
 of the Identity system.

 This is where the OWIN Identity System gets a little ugly. Microsoft, in
 their infinite wisdom, decided to create a very granular identity system.
 This specifically addresses the biggest complaint about previous
 frameworks: They were either too cumbersome to implement and user, or too
 subtle to customize to individual needs.

 The OWIN granularity means you don't have to implement everything they
 want you to, if you don't need it or to want it. The reality though, is
 that in order to take advantages of what the OWIN identity framework
 provides, you pretty much have to implement all of it anyway. This really
 isn't a big issue since the individual interfaces are actually relatively
 simple to implement. And while annoying to have to type in all this code,
 it does make it easier to write articles that walk you through it.

 Interface IUserStore

 The only Interface that you are required to implement is the IUserStore(Of
 IUser) (See Figure 1). It must have the ability to Create, Update, Delete
 and Find users.

Public Class ApplicationUserStore
 Implements IUserStore(Of ApplicationUser)

 ...
 Public ReadOnly Property Users As IQueryable(Of ApplicationUser) Implements IQueryableUserStore(Of ApplicationUser, String).Users
 Get
 Return _Users
 End Get
 End Property
 Private _Users as New List(Of ApplicationUser)

 Public Function CreateAsync(user As ApplicationUser) As Task Implements IUserStore(Of ApplicationUser, String).CreateAsync
 Return user.SaveAsync
 End Function

 Public Function UpdateAsync(user As ApplicationUser) As Task Implements IUserStore(Of ApplicationUser, String).UpdateAsync
 Return user.SaveAsync
 End Function

 Public Function DeleteAsync(user As ApplicationUser) As Task Implements IUserStore(Of ApplicationUser, String).DeleteAsync
 Throw New Exception("User Delete is not supported")
 End Function

 Public Function FindByIdAsync(userId As String) As Task(Of ApplicationUser) Implements IUserStore(Of ApplicationUser, String).FindByIdAsync
 Return FindUserAsync(DBContext, "Id", userId)
 End Function

 Public Function FindByNameAsync(userName As String) As Task(Of ApplicationUser) Implements IUserStore(Of ApplicationUser, String).FindByNameAsync
 Return FindUserAsync(DBContext, "UserName", userName)
 End Function

 ...

End Class

Public Class ApplicationUserStore
 Implements IUserStore(Of ApplicationUser)

 ...
 Public ReadOnly Property Users As IQueryable(Of ApplicationUser) Implements IQueryableUserStore(Of ApplicationUser, String).Users
 Get
 Return _Users
 End Get
 End Property
 Private _Users as New List(Of ApplicationUser)

 Public Function CreateAsync(user As ApplicationUser) As Task Implements IUserStore(Of ApplicationUser, String).CreateAsync
 Return user.SaveAsync
 End Function

 Public Function UpdateAsync(user As ApplicationUser) As Task Implements IUserStore(Of ApplicationUser, String).UpdateAsync
 Return user.SaveAsync
 End Function

 Public Function DeleteAsync(user As ApplicationUser) As Task Implements IUserStore(Of ApplicationUser, String).DeleteAsync
 Throw New Exception("User Delete is not supported")
 End Function

 Public Function FindByIdAsync(userId As String) As Task(Of ApplicationUser) Implements IUserStore(Of ApplicationUser, String).FindByIdAsync
 Return FindUserAsync(DBContext, "Id", userId)
 End Function

 Public Function FindByNameAsync(userName As String) As Task(Of ApplicationUser) Implements IUserStore(Of ApplicationUser, String).FindByNameAsync
 Return FindUserAsync(DBContext, "UserName", userName)
 End Function

 ...

End Class

Figure 1

 As you look at this you will notice that seems a little too simple. Well,
 it is. Sometimes we get lucky. IUserStore does not implement any password
 handling or role management or any ability to do login or out. This will
 be handled by the next few interfaces.

 Two things that I'd like to highlight [Figure 1], are the FindByIdAsync
 and FindByNameAsync functions. They provide OWIN with a way to lookup
 existing users in your database. The ApplicationUser class does not have a
 way to do these lookup by default, so you have to implement this lookup
 yourself. I've provided and example to show how I approached it using a
 subroutine [Figure 2] to help you implement your own solutions.

 Public Async Function FindUserAsync(DBContext As ApplicationDBContext, FieldName As String, FieldValue As String) As Task(Of ApplicationUser)

 ' Create the User Object if not found
 Dim _User As ApplicationUser = Nothing
 For I As Integer = 0 To (_Users.Count - 1)
 If FieldName.ToLower = "id" AndAlso _Users(I).Id = FieldValue Then
 _User = _Users(I)
 ElseIf FieldName.ToLower = "username" AndAlso _Users(I).UserName = FieldValue Then
 _User = _Users(I)
 ElseIf FieldName.ToLower = "email" AndAlso _Users(I).Email = FieldValue Then
 _User = _Users(I)
 End If
 Next

 If _User IsNot Nothing Then
 ' Found an item, so check to see if we need to update it or not.
 If _User.LastRead.Add(TimeSpan.FromMinutes(10)) > Now Then
 ' The last time this item has been read was longer than 5 mins ago
 ' reread current information from database
 _User.LastRead = Now
 Else
 ' ReRead the infomraiton
 Await _User.LoadAsync()
 End If

 ' Returns the user information
 Return _User
 Else
 ' Didn't find a user, so look it update in the database
 Dim _RequestItem As String = "FIND.USER"
 _RequestItem = _RequestItem & mvFunctions.AM & FieldName
 _RequestItem = _RequestItem & mvFunctions.AM & FieldValue

 ' Send the data to the server
 Dim _DataItem As String = String.Empty
 Dim _Result As ApplicationDBContext.CallSubroutineResults = Await DBContext.CallSubroutineAsync("SPECTRUM.OWIN.USER", _RequestItem, _DataItem)
 If _Result.CallError.BooleanValue(1, 0, 0) Then
 ' Error, can't find the information
 Return Nothing

 ElseIf _Result.Data.Item(0).IsNullOrEmpty Then
 ' Nothing returned
 Return Nothing

 Else
 ' Extract the User Id and User Item and create
 ' the User Object
 _User = New ApplicationUser(_Result.Data.Item(0).StringValue(1, 1), _Result.Data.Item(1))
 _Users.Add(_User)
 Return _User
 End If

 End If
 End Function

Figure 2

 Keeping a cached copy of the retrieved information in memory is one of the
 most important things that we need to be doing each time we access a user
 from the database. Doing this keeps the application responsive. As we all
 know, the slowest part of any client server applications is usually the
 communication with the database itself.

 Since this is a memory cached copy, we don't always know how long an item
 has been in memory and needs to be refreshed. It is always important to
 keep track of when something is placed in cache so you know when to
 refresh the information in case it has changed.

 I've done this by added an extra property to the ApplicationUser class we
 built in Part I [Tracey: we need a link to that issue here] called
 LastRead. Every time an ApplicationUser is read from, or saved to, the
 database, this property will be set to the current date/time. This allows
 us to keep track of how old the data is and help us decide whether our
 application should reload the data or not.

 I do this using a ten seconds timeout [Figure 2]. I chose ten
 seconds for no other reason that it contains the best of both worlds. If
 the OWIN framework needs to look up and access a ApplicationUser object
 somewhere else in its pipeline, it is likely less than ten seconds from
 the initialization of the ASP.NET page.

 If the object is older than that, then we must make sure to refresh the
 information. Otherwise, if an operation updates the database with new
 roles or passwords, the user would be forced to wait on the web server to
 decide if the data is old or not.

 Interface IUserPasswordStore

 Since we normally need to authenticate the user with a password, it is
 important to implement the IUserPasswordStore interface [Figure 3].
 One of the gotchas with OWIN is that it uses Microsoft's default password
 hashing system. While this is good because it does not keep the passwords
 as clear text, it doesn't help us when we need to reset a password outside
 of the OWIN framework.

Public Class ApplicationUserStore
 Implements IUserStore(Of ApplicationUser)
 Implements IUserPasswordStore(Of ApplicationUser)

 ...

 Public Function GetPasswordHashAsync(user As ApplicationUser) As Task(Of String) Implements IUserPasswordStore(Of ApplicationUser, String).GetPasswordHashAsync
 Return Task.FromResult(Of String)(user.PasswordHash)
 End Function

 Public Function SetPasswordHashAsync(user As ApplicationUser, passwordHash As String) As Task Implements IUserPasswordStore(Of ApplicationUser, String).SetPasswordHashAsync
 user.PasswordHash = passwordHash
 Return Task.FromResult(0)
 End Function

 Public Function HasPasswordAsync(user As ApplicationUser) As Task(Of Boolean) Implements IUserPasswordStore(Of ApplicationUser, String).HasPasswordAsync
 Return Task.FromResult(Of Boolean)(Not String.IsNullOrEmpty(user.PasswordHash))
 End Function

 ...

End Class

 Figure 3

 Sometimes you need to keep the password stored as plain text, or in a
 two-way hash system, in order to use the same password functions already
 built-in to your LOB (Line Of Business) system. In order to do this, you
 will need to create another class, outside the ApplicationUserStore class,
 to handle keeping passwords in clear text [Figure 4].

Imports Microsoft.AspNet.Identity

''' <summary>
''' This Class is used to decide the type of password received from the database
''' and generates a has value to compare it.
''' </summary>
Public Class ApplicationPasswordHasher
 Implements IPasswordHasher

 Public Function HashPassword(password As String) As String Implements IPasswordHasher.HashPassword
 ' Return Clear Text as the Hash. Not as secure, but needed when sending password to
 ' program.
 Return password
 End Function

 Public Function VerifyHashedPassword(hashedPassword As String, providedPassword As String) As PasswordVerificationResult Implements IPasswordHasher.VerifyHashedPassword
 ' No hash was done, so check clear text.
 If hashedPassword = providedPassword Then
 Return PasswordVerificationResult.Success
 Else
 Return PasswordVerificationResult.Failed
 End If
 End Function
End Class

Figure 4

 This class will be hooked up to the ApplicationUserStore when we implement
 the ApplicationUserManager.

 Conclusion

 These are the only interfaces that you really need to implement in order
 to make the OWIN Security framework functional. There are many more that I
 will go into in later articles that I think are also important. These are
 the minimum that are required to get something to work.

 Six Million Dollar Date

 CHARLES BAROUCH

 HDWP

 In the opening to the TV show, Six Million Dollar Man, they promised
 to rebuild him - better, faster, and stronger. This occasional series, the
 Six Million Dollar _____ will offer suggestions on how to elevate mvBASIC
 commands by making them better, faster, and stronger. We have the
 technology.

 Getting data into an mvBASIC program requires a READ or an INPUT. While I
 have seen many, many attempts at creating a wrapper around the INPUT
 command, the diversity of data we push through often makes the wrapper
 into a programming language unto itself, using dozens of parameters and
 conditionals to attempt a one-size-fits-all solution. Instead of trying to
 be everything to everything , our six million dollar DATE will be
 an input wrapper focused on getting date-related input right. Sometimes
 limiting scope is the best answer.

 Dates take on many forms: most operating systems have a time-date stamp
 based on an epoch. MultiValue has a epoch based on date alone. Europeans
 write dates as day/month/year while Americans write month/day/year. People
 who care about sorting external dates use year/month/day. Then there's
 Julian format, longhand (1 June 1981), and shorter longhand (28 Sept
 1985). Reasonably, our wrapper needs to understand all of them (plus two
 bonus cases to be discussed later) and should be able to convert them
 any-to-any for use [Figure 1].

 001 subroutine DATER(RESULT, RULES, DEFAULT)
002 * by Charles Barouch
 (Results@HDWP.com)
003 * as seen in International Spectrum Magazine

004 input ANS
005 convert '/' to '-' in ANS
006 if ANS = ""
 then ANS = DEFAULT
006 begin case
007 case ANS = matches
 '"T"-1N0N' and INDEX(RULES<1>,'T',1) = 0
008 * Example: T-1
 (yesterday)
009 IDT = DATE() - oconv(ANS,'MCN')
010 case ANS =
 matches '"T"+1N0N' and INDEX(RULES<1>,'T',1) = 0
011 * Example:
 T+1 (tomorrow)
012 IDT = DATE() + oconv(ANS,'MCN')
013 case ANS
 matches '1N0N"-"1N0N"-"1N0N' and (RULES<3> = "A" or RULES<3> =
 "")
014 * American format (mm-dd-yy or mm-dd-yyyy)
015 IDT =
 OCONV(ANS,'D') ;* Assuming You are set to American format
016 case
 ANS matches '1N0N"-"1N0N"-"1N0N' and RULES<3> = "E"
017 *
 European format (dd-mm-yy or dd-mm-yyyy)
018 TEMP =
 oconv(ANS,'G1-1'):'-':oconv(ANS,'G0-1'):'-':oconv(ANS,'G1-1')
019 IDT
 = OCONV(TEMP,'D') ;* Assuming You are set to American format
020 case
 1
021 IDT = ANS
022 end case
023 *
024 begin case

025 case RULES<2> = "I"
026 RESULT = IDT
027 case
 RULES<2>[1,1] = "D"
028 RESULT = oconv(IDT,RULES<2>)

029 case 1
030 RESULT = IDT
031 end case
032 return

 Figure 1

 RULES<1> has the allow/disallow for input formats, null means allow.
 RULES<2> has the desired resulting format. RULES<3> is either
 "A"merican, "E"uropean, or "J"ulian.

 About that first bonus case: Date math and date
 shorthand are among the most common things needed by data entry. T+7 is
 much easier than making the user look up the date seven days from now. EOM
 is much easier than forcing them to memorize 30 days hath September,
 April, June, and November . Personally, I like being able to type W-1
 for last week or Sun+1 for a week from Sunday.

 I've only put in a fraction of the code here because the rest becomes easy
 once you have the examples. To create week math (W-7 style logic) just
 copy lines seven through twelve and change "T" for "W" and multiply the
 oconv result by seven.

 To create end-of-month (EOM style logic) just take today's date, keep the
 month and year and sub out the day for 28,29,30, or 31 as appropriate. To
 create day-of-the-week (SUN+1 style) divide the internal date by seven to
 get the SUN date. If MON was requested, get the SUN date and add one. SAT
 is SUN plus six. If you prefer SUN, MON, TUE... only being future, you can
 use the formula outlined and add seven if the result is less than today.

 About that second bonus case: We often need to
 distinguish between skipped and intentionally left out. When I worked in
 rush courier, we had two special 'dates' called International and Unknown.
 Placing an "I" in a date field meant that there needs to be a date but it
 can't be determined until business hours at the international destination.
 "U" meant that there needs to be a date but it can't be filled in yet for
 any reason other than the one which "I" denotes.

 Having a generalized date routine that can be plugged into any program
 makes adding or restricting features like this easy. Did I miss a format
 you use? You can add it to your version of the six million dollar date. is

 Got your own wrapper for a MultiValue BASIC command or TCL verb? Send
 us your Six Million Dollar make-overs so we can share them with the
 community. Email editor@intl-spectrum.com .

 More about Dates

 I've actually had to ask "What does a day mean?" For some companies, the
 day ends at closing time, not at midnight. Mom-and-pop shops might close
 their day whenever mom leaves because she won't be updating the financials
 again until tomorrow.

 Oh, and if you think a day has twenty-four hours, consider that some have
 twenty-five due to DST (Daylight's Saving Time), and some have
 twenty-three, also due to DST. Of course, when to add or subtract that
 hour is locational. Australia and the U.S. have DST reversed from one
 another. And, inside the borders of Arizona for example, they never have
 DST. Well, except on Navajo land, where they do. Florida has a plan
 underway to make DST permanent (as in, never "fall back" to Standard
 Time).

 Weeks and months are similarly complex. While the SEC (Security Exchange
 Commission) has rules against closing a month early or holding it open
 late, privately held companies can elect do do those things. So, assuming
 a month ends on the last day is not a sure assumption.

 What about years? For most businesses, a year is made of full weeks, which
 means either a few days in December roll into the next year or a few days
 in January are owed to the previous year. And, for the historically
 minded, one year is missing eleven days. The day after September 2nd, 1752
 is September 14th, 1752. At least it was in England.

 You can read more about that here: http://mentalfloss.com/article/51370/why-our-calendars-skipped-11-days-1752

 UniVerse and Python - it's here!

 BRIAN LEACH

 Brian Leach
 Consulting, ltd

 Some months back I wrote in Spectrum about Rocket's plans for introducing
 Python into UniVerse and UniData. Well, the wait is over because the
 release of UniVerse 11.3.1 â�� according to some at Rocket the biggest
 release they have ever done â�� is here.

 So first off â�� a big 'well done' for getting it out the door.

 I know I'm often critical of the product â�� I carp because I care â�� so it's
 great have the chance to give praise where it's due. 11.3 is a milestone
 release and one that promises interesting times ahead.

 Whilst there are other changes, it's the introduction of Python that
 stands out. Not merely as a client language but as a fully-fledged server
 language sitting alongside UniBasic. This is a huge step forward not just
 for Rocket but for MultiValue in general.

 Why Python Matters

 We have not seen a new language adopted server side â�� well, not since Dick
 Pick added mvBasic all those years ago. Some brave souls may have embraced
 RPL (whose history predates Basic) or ALL in the old days. We have had
 4GLs and domain specific languages galore â�� including my own, of course,
 in the shape of the mvTest, mvScript and mvStudio products.

 We have seen massive improvements to the core mvBASIC language, including
 extension libraries and syntactic improvements like the object orientation
 and JSON objects on QM. There have been link-ups like the way jBase can
 import C functions directly into its cross-compiled variant. And of course
 the language itself is no more BASIC than VB.NET â�� we've just been stuck
 with that name and the negative connotations that surround it. Given how
 eagerly the vendors have always gone out of their way to rename everything
 has also increased confusion (PROC to ProVerb, ACCESS to AQL, ENGLISH,
 INFORM, RetrieVe, UniQuery or jQL) it's amazing that in all that time they
 haven't renamed the one thing that really needed it!

 But a fundamental addition of a new language is a different ball game.

 Those of us who work with UniBasic, especially in its UniVerse dialect and
 with knowledge of other languages, appreciate the clarity and
 intelligibility it can bring to a business process. Much easier to follow
 through a well written UniVerse routine than navigate the spaghetti mess
 of several dozen java classes (why does java never use one class where it
 could possibly spawn twenty?). Most business processes are essentially
 linear, and that suits a clear and simple procedural language.

 Why then, after all these years, do we need a new language? The answer is
 simple â�� recruitment.

 Why Python Really Matters

 Just last week I was in a meeting with a client whose critical UniVerse
 application is under threat from senior management . It's a depressingly
 familiar story â�� the system must go, not because it fails to meet the
 needs of the users but because it is an alien technology in their
 business, not understood by the consultants they increasingly use to
 outsource and because the have a problem finding and retaining skilled
 UniVerse developers. The fact that it has, like so many MultiValue
 systems, been starved of resources for years whilst keeping the business
 running on a shoestring with only one dedicated chap looking after it, has
 eluded them. As has the prospect of training up new developers to
 understand it.

 So today we are drafting our response, pointing out all the usual stuff.
 No, UniVerse is not a legacy technology and is not older than the 'modern'
 SQL Server you're proposing to replace it (though it may look it, you do
 realize that "new" system is just Sybase with a pretty front end - you've
 heard of NoSQL haven't you?) and no, it's not going to disappear next year
 because you've never heard of the supplier and yes, there are places you
 can go if it ever did, and yes, the application is old because you haven't
 funded it responsibly but it will work with a shiny new .NET front end.
 And we agree, per-user licencing is expensive and archaic in today's world
 but those licences have already been paid for.

 Oh and by the way, your expectations for re-coding it all on SQL are
 wildly optimistic.

 We've seen this all before.

 So the technical arguments we know.

 But the risk from under-staffing is a real one and ever present. Yes, we
 understand that your standard recruitment agencies don't have a clue what
 MultiValue is and so they can't find you new people, but you should know
 what there are specialist agencies who probably can. But it's still seems
 to be so much easier, in business minds, to spend a few million rewriting
 a system in "mainstream technology" than a few thousand training up new
 developers to understand this one.

 But now, there is a new and powerful argument.

 Today you can hire Python programmers off the street and, with the
 knowledge of a simple API and guidance from senior people who do
 understand UniVerse and the application, put them to work writing UniVerse
 server code. It really is that simple.

 From a perception point of view, this is massive.

 'Why would I want to learn BASIC, that's a hobby language (thanks,
 Microsoft) not for professionals. It's a dead end. If I learn it will I
 ever get another job?'

 Python does not have that legacy. It is used everywhere â�� from embedded
 applications on boards such as the Raspberry Pi to large scale websites.
 It is easy to learn but not frowned upon. And it has a huge and
 enthusiastic following.

 Getting to Grips

 When Rocket first announced Python support, my initial reaction was the
 same as I hear from other people since â�� why not JavaScript, isn't that
 the language of the moment? But Python has integrated well and who knows,
 perhaps having made this leap, (Rocket are you listening) JavaScript may
 be an option in future. Or perhaps the hip young things wouldn't be seen
 using JavaScript on a server (except Node.js, which has inexplicably made
 itself cool).

 If you've not used Python before it is weird and will trip you up, but it
 is easy to learn and there is a huge wealth of materials out there for
 both beginners and experienced programmers looking to add it to their
 repertoire.

 It is structured, and whilst I appreciate good UniBasic code, it is
 probably harder to write bad code in Python than it is in UniBasic. At the
 least, anything written in it will be a fresh start, so no excuses.

 Python routines are written in regular files and run using the RUNPY
 command:

 RUNPY filename itemname

 There is no catalog equivalent, though that would be nice to see, as would
 the ability to call a Python function directly from UniObjects. Right now
 you would have to shim that through a UniBasic subroutine to make the
 call. UniBasic has been extended to integrate directly with Python.

 And nice to see, Rocket has introduced some videos to explain these new
 features.

 The most important thing to note is that this is not a bolted-on client
 language. The Python integration, whilst presented through UniObjects-like
 semantics, is in the same memory space. This is important as it means the
 performance is roughly on a par with UniBasic for such operations as file
 i/o. The performance tests I have run so far indicate that whilst there is
 an overhead â�� as one would expect â�� it is well within the tolerable range
 to make this a suitable language for writing server routines. The exact
 numbers will of course vary with platform specifics, but expect around 25%
 on a file operation compared to UniBasic. That's actually pretty good
 going.

 To put this in context, just from my laptop:

 Writing, reading and deleting 10 x 10,000 items took UniBasic 2.9 seconds,
 Python 3.8 seconds.

 Just for fun, doing the same in PROC took 6 seconds.

 I'll be blogging more about this, and the other 11.3 features, over the
 coming days but for now, grab hold of 11.3 and have a play.

 Business Tech: Same Difference

 CHARLES BAROUCH

 HDWP

 Ask most successful business owners and you'll find that they attribute
 part of their success to doing things differently. They will tell you that
 they offer a special view on service, a unique sales proposition, or
 significant value-add to their process; something that sets them apart.

 Our experience as consumers tells us a different story. While we all have
 our view on certain companies being exceptional â�� Microsoft, Apple, and
 Google have enthusiastic consumers for example â�� we usually see most of
 the businesses we deal with, personally and professionally, as close to
 interchangeable. There are slight preferences in many cases but we don't
 see huge differences.

 Of course, everyone see categories of business as different. Few people
 would argue that your accounting firm and your pet groomer are
 interchangeable. For the purposes of this article, however, they are.

 CSP

 Most businesses are based on CSP - Cost Sharing Propositions. Hiring a
 full-time accountant (or becoming an accountant) is too expensive. Sharing
 one accountant among two dozen clients provides that accountant with a
 living without laying the expense on any one client. My younger daughter,
 Dani, is part of a group which does dog walking and house sitting. Hiring
 a house sitter for only the days you will be away is CSP. My sister is in
 catering, where she creates and orchestrates large, elegant parties.
 Hiring her for the weddings and other notable events which occur over your
 entire life makes more sense than having her on payroll during the years
 between your two daughters' weddings.

 While industries are different, and businesses within industries are
 different from each other, CSP is the point of commonality that most of
 them share. The practical question is: Why does do we care?

 Atoms Matter

 In developing software, as a consultant or employee, we can take the most
 specific approach: The Acme Corporation needs software for people who make
 the left-hand gloves on Tuesdays between seven and noon. Ideally, while
 accounting for the specifics, we also want to lift our heads up and try to
 see farther. Making software that helps people make any sort of glove, on
 any of the seven possible days â�� morning, noon, or night â�� will still let
 us target Acme's need. Additionally, as their needs change, our software
 will be more adaptable.

 This is perspective. Looking up from the specifics and seeing the wider
 potential for our applications is how we move from writing custom software
 to writing verticals (software tailored to an industry) or writing
 horizontals (software tailored toward a functional set of activities, like
 inventory or customer service).

 CSP is the next logical step: Moving from a vertical model or horizontal
 model to a more universal model. The core argument for CSP is that while
 gold and lead are different, they are the same because they are made of
 atoms.

 For application software houses, focusing on the problem of gloves instead
 of left-handed Tuesday gloves is inherent in the approach. If they are
 particularly attentive, they will understand the points of commonality
 between glove manufacture and other clothing manufacture. This is the CSP
 path, go from specific, to general, to hyper-general.

 Growth and Death

 While the Supreme Court may have indicated that corporations are people, I
 disagree. However, they do share the attributes of growth and death. This
 is where CSP comes in, as a help with the former and a hindrance to the
 latter.

 I'll make the broad assumption that we all want the people who pay us to
 be able to keep paying us. Whether we are in business for ourselves and
 those people are the customers, or we are employed and those people are
 the bosses, their success helps us. What defines success? In a capitalist
 endeavor like business it is measured in growth and money.

 Larger, more diverse, audiences for your product or service increase the
 ability to expand. A product that only has one customer is harder to make
 profitable. The more customers, the more opportunities to make a profit.
 CSP is a viewpoint that helps you generalize what you do.

 Those who know me know that I used to be a senior executive in a half
 billion dollar clothing company. The division I was initially employed by
 made belts, ties, and suspenders. Our divisional software was working so
 well that the pitch was made to move the entire company to our platform.
 While only half the company ended up moving, it was still a daunting
 challenge.

 We could have looked at the problem and â�� rightly â�� said that belts have
 one size, ties have no sizes, so our software should not be used for
 shirts which have two sizes (collar and sleeve measurements). We could
 have pointed out how ties and belts are singular products (one unit is one
 unit) but suits are mutlipart products (one unit is a roll-up bill of
 materials of other finished parts, like pants and jackets). We didn't. We
 took a CSP view and found the common points. By isolating the differences,
 we solved the problems.

 I won't tell you I was the hero of this story because I wasn't. I
 contributed, I cheered others on, and I helped where I could. It worked
 because the entire team accepted the idea that it could and should work.

 The Resume

 I recently helped someone with their resume. Their understanding of the
 differences between their current job and the job they wanted got in their
 way. Being less well informed, I suffered no such problem. Instead, I
 looked at the job description, looked at their resume, and drew parallels.

 As technical people, we live in the details, the minutiae, the weeds.
 Sometimes taking the ten-thousand-foot view helps us see more clearly. Her
 resume, our view of the company we work for, both of them can benefit from
 an occasional step back. You may discover a brand new place where we fit
 in.

[image: Natec Systems]

[image: Ladybridge Systems Ltd]

[image: HDWP]

[image: PICK Programmers Shop]

[image: Zumasys, Inc]

[image: SJ+ SYSTEMS ASSOCIATES]

[image: Execu-Sys]

Mar/Apr 2018

http://www.intl-spectrum.com/mag/marapr.2018/default.aspx

MISSION STATEMENT

 International Spectrum magazine's editorial mission is to be the premier independent source of useful information for users, developers, and resellers of MultiValue database management systems, open systems business database solutions, and related hardware, software, and peripherals. Published bimonthly, International Spectrum provides comprehensive coverage of the products, companies, and trends that shape the MultiValue marketplace as well as the computer industry at large - helping its readers get the most out of their business computer systems.

NEWS RELEASES/UNSOLICITED ARTICLES

International Spectrum is eager to print your submissions of up-to- the-minute news and feature stories complementary to the MultiValue marketplace. Black and white or color photographs and diagrams are welcome. Although there is no guarantee a submitted article will be published, every article will be considered. Please send your press releases, articles, and queries to: editor@intl-spectrum.com. International Spectrum retains all reprint rights.

International Spectrum is a registered trademark and MultiValue is a trademark of International Spectrum, Inc. All other registered trademarks and trademarks are the property of the respective trademark holders.

Links:

	http://www.intl-spectrum.com/

	http://www.twitter.com/intlspectrum

	http://www.intl-spectrum.com/facebook

	http://www.intl-spectrum.com/linkedin

	http://www.multivalue.org

OEBPS/Images/image00020.jpeg
THEME-THOLOGY: | A ST &
INVASION

Voices by Lisa A. Kramer
| Was a Teenage Alien by LJ Cohen
Singularity by Jeremiah Lewis
Not Like Us by Mike Reeves-McMillan
That Kind by Charles Barouch
Yellow by Bill Ries-Knight
An Invasion of Ideas by Jeremy Lichtman
Famine, with Fries by Jefferson Smith
The Several Monsters of Sainte-Sara-la-Noire by Michael Williams
Going Viral by Rachel Desilets
Dead Planet Scrolls by Timothy Hurley
Red Vapor by Michaela Susanne
The Worms Crawl In by Michelle Mogil
Nano Nation by CM Stewart
The Woods, The Cellar, and Cover art by Aaron Wood
All other interior art by Juan Ochoa

WWW.THEME-THOLOGY.COM

OEBPS/Images/image00019.jpeg
Open

taking multivalue ...
where it has never been before

Ladybridge Systems Ltd

17b Coldstream Lane, Hardingstone, Northampton, NN4 6DB, England

Close compatibility with most other
multivalue environments

Easy migration process

Maintenance-free file system for ease
of use

High quality documentation

QMClient API for development of GUI
and web applications

Low licensing cost

AccuTerm bundled at no additional
cost

Many unique features

Worldwide distributor: Zumasys, 9245 Reasearch Drive, Irvine CA 92618, USA

WwWw.zumasys.com

www.opengm.com

OEBPS/Images/image00018.jpeg
QuickBooks API for the MultiValue Database

- ReadWrite Directlyto Quickbooks
tabases

- NoMNeed o Learn th nternals of
QuickBooks.

- QuickBooks Pro/Premier Enterprise

NATEC

Systems

OEBPS/Images/image00023.jpeg
17 audis hoveyou jumping through hoops?

i
)
3

OEBPS/Images/image00022.jpeg

OEBPS/Images/cover00025.jpeg
intl-spectrum.com $7.00 U.S.

Il NTERNATI ONAL

F | MARCH/APRIL 2018

Also in this Issue

..‘ + $6M Date

¢ UniVerse and Python - It's Here!

* Case Study: MBS helps SA Police Super Modernize
¢ CSP vs. Snowflakes

